Модальные логики

Страница 3

Не выводимы из (A1)-(A4) (либо же из (A5)-(A8)) следующие законы, известные уже Аристотелю: (a) CCpqCMpMq, (b) CCpqCLpLq, (c) CLCpqCMpMq, (d) CLCpqCLpLq. Можно показать, что из (a) следует (c), а из (b) - (d). Поэтому следовало расширить "основную модальную логику", присоединяя к ее аксиомам формулы (a)-(d). Формулы (a) и (c) можно считать частными случаями закона экстенсиональности CEpqCfpfq ("f" означает переменный функтор). Присоединяя (a) к (A1)-(A3) можно доказать (A4); аналогично присоединяя (c) к (A5)-(A7) можно доказать (A8). Однако обе конструкции Лукасевич считает недостаточно общими.

Окончательная формулировка модальной системы основывается на упоминавшемся выше результате ученика Лукасевича - Мередита, утверждавшего, что L2 и закон экстенсиональности следуют из формулы CfpCfNpfq.

Окончательно аксиоматика модальной логики у Лукасевича принимает следующий вид: ½¾CfpCfNpfq, ½¾CpMq, ¾½CMpp, ¾½Mp. L-система содержит исчисление высказываний L2, но не является двузначной. Лукасевич показал, что адекватной матрицей для L-системы является следующая четырехзначная матрица (1 является выделенным значением):

СС

11

22

33

44

ТN

MM

11

11

32

33

44

44

11

22

11

11

33

33

33

22

33

11

12

11

22

22

33

44

11

11

11

11

11

33

Из того факта, что существуют две опосредующие истину и ложь оценки (2 и 3) не следует делать вывод, что в системе модальной логики Лукасевича существуют два понятия возможности. Тем не менее, в L-системе имеют место т.н. возможности-близнецы M и M1. Они неразличимы, когда выступают отдельно, но разнятся, когда входят в одну формулу, например, формулы MMp и M1M1p эквивалентны, а формулы M1Mp и MM1p неэквивалентны.

Этот факт в системе модальной логики Лукасевича не имеет интуитивной интерпретации. Четырехзначная матрица вообще изменила взгляд Лукасевича на значение многозначных логик: если раньше он считал, что выбор следует делать между трехзначной логикой или бесконечнозначной, то теперь он признал четырехзначную систему адекватной для выражения понятия возможности.

Некоторые неясные вопросы Лукасевич пытается выяснить путем сравнения с другими модальными системами, в частности, с системой фон Вригта, а не более известными системами Льюиса, поскольку они основываются на т.н. "строгой импликации", которая более сильна, нежели "материальная импликация", используемая Лукасевичем. Он подвергает сомнению т.н. правило необходимости: если x является формулой системы, то Lx - также формула. Лукасевич считает, что предложение является непосредственно ложным или истинным и не видит причины, по которой тавтология должна быть "более истинной", чем "обычное" истинное предложение, а контрадикторное предложение "более ложно", чем "обычная" ложь. В этой позиции чувствуется влияние Твардовского, подкрепленное взглядами Лесьневского.

Страницы: 1 2 3 4

Другое по теме:

Возрастные аспекты социально-психологической структуры класса
Взаимоотношения со сверстниками в коллективе — проблема значимая во всех возрастах. Однако в разное время ровесник занимает различное место в жизни ребенка, а, следовательно, его влияние, роль коллектива меняется, становясь то более, то м ...

Подход с позиции личных качеств
Лидерство стало объектом исследования, когда в начале двадцатого столетия начали впервые изучать управление. Однако только в период между 1930 и 1950 гг. было впервые предпринято изучение лидерства в крупных масштабах и на систематической ...

Технология развития культуры делового общения
Предлагаемая технология направлена на углубление и расширение знаний по вопросам культуры речи, устранение в ней нормативно-языковых ошибок, обогащение словарного запаса языка, совершенствование голоса и дикции, развитие языковых качеств ...